Titomic logo

Resources

What is cold spray technology? Commonly asked questions

Explore answers to commonly asked questions about our cold spray technology, Titomic Kinetic Fusion (TKF).

What’s the cost difference between Titomic Kinetic Fusion and traditional manufacturing?

TKF costs significantly less than traditional manufacturing methods for a variety of reasons.

What’s the density of Titomic Kinetic Fusion coatings?

We’ve achieved typical density rates of 90-95% and over 99% when enhanced by post-processing.

How do the material properties of TKF compare to casted or forged parts?

Generally, you can achieve mechanical properties similar to casting and forging.

Do the parts need to be heat treated?

It depends on what parts you need, as well as the mechanical properties the application requires.

Frequently asked questions

What’s the cost difference between Titomic Kinetic Fusion and traditional manufacturing?

TKF costs significantly less than traditional manufacturing methods for the following reasons:

  • It doesn’t need large-scale tooling (such as vacuum moulds) to produce parts. A simpler setup means reduced costs.
  • It turns metal powder to part in just hours, by depositing the powder at supersonic speed to rapidly build up parts layer by layer – so there’s no need for casting or forging. Plus, the part you need is the part you make, saving time and materials.
  • It keeps material costs down. For example, when we manufactured a 1.2m titanium ring, the ‘as built’ weight was 60kg while the final part weighed 56kg – representing a ‘buy to fly’ ratio of 1.08 with material costs of only A$3,000.
How does the cost Titomic Kinetic Fusion compare to traditional repair or resurfacing?

Our compact cold spray systems cost considerably less than traditional repair and resurfacing methods for the following reasons:

  • You can resurface and refurbish parts in just minutes.
  • Materials often cost less than $300.
  • You no longer need to outsource repairs. For example, a shower floor manufacturer quoted $40,000 to ship a damaged resin transfer moulding tool overseas spent just $3,000 repairing it with Titomic’s D523 system – as well as saving months of downtime.
What is the density of Titomic Kinetic Fusion coatings?

We’ve achieved typical density rates of 90-95% and over 99% when enhanced by post-processing.

If needed, it’s also possible to create less dense, more porous coatings for grip, abrasion, chemical processing and more through process optimisation, powder manipulation, and post-processing parameters.

How do the material properties of TKF compare to casted or forged parts?

Generally, you can achieve mechanical properties similar to casting and forging. While some parts may need to be processed with a heat treatment to make them more ductile, we can tailor process variables to meet your specific needs – a clear advantage compared to other methods.

Do the parts need to be heat treated?

It depends on what parts you need, as well as the mechanical properties the application requires. However, generally parts created with TKF will need some post-processing heat treatment.

Why is it called ‘cold’ spray?

Cold spray doesn’t require heat to melt the materials being sprayed. This is different to traditional metal spraying methods like welding or thermal spraying, which use heat to melt the material before it’s applied to a surface.

Instead, a high-pressure gas is used to accelerate tiny metal particles (which are usually less than 50 micrometres in size) to supersonic speeds. This creates heat through kinetic energy, when the particles collide with the surface of the object being sprayed.

How does cold spray work?

Cold spray works by exploiting the kinetic energy of tiny metal particles. Low-to-high pressure gas is used to accelerate the particles (which are usually less than 50 micrometres in size) to supersonic speeds. These are then sprayed onto a surface where they compress and deform to create a cohesive bond.

This results in a strong, dense coating that can be used for a variety of applications – such as repairing damaged parts, improving the surface properties of a material, or creating new, complex shapes.

What metals can be used?

There are many metals that can be used in our cold spray systems. This includes aluminium, copper, nickel, titanium, stainless steel, Inconel, and more.

Since these all have different characteristics – such as strength, ductility, and resistance to corrosion – the chosen metals will depend on the application, as well as the properties needed for the final product.

Some metals may also be easier or more difficult to cold spray, depending on their melting point, ductility, and other factors.

What makes TKF so beneficial is that it can fuse dissimilar metals together. This means you can leverage the strengths of multiple metals in a single, monocoque part. For instance, you can fuse copper to titanium, nickel to cast iron, and much more.

What surfaces can metal be deposited onto?

Cold spray can be used on a variety of surfaces. This includes metals, ceramics, plastics, and composites.

The process is particularly useful for repairing worn or damaged metal parts, as it can restore the surface to its original shape and properties without causing distortion or weakening the material.

Our cold spray systems can also be used to add new features or properties to a surface, such as improved wear resistance, corrosion resistance, or thermal properties.

You can even use it to create new shapes or structures that would be difficult or impossible to achieve with traditional manufacturing methods.

What are the common applications?
There are hundreds of cold spray applications – with many more to be discovered. Learn about ideal cold spray applications or download our full design guide.
 
Common applications include:
  • Aerospace: Repair and restore worn or damaged aircraft parts (such as engine blades, landing gear, and wing components), or add corrosion-resistant coatings to aircraft surfaces.
  • Automotive: Repair and restore worn or damaged engine components (such as pistons, cylinder heads, and crankshafts), or add wear-resistant coatings to automotive parts.
  • Marine: Repair and restore worn or damaged marine components (such as propellers, shafts, and rudders) or add corrosion-resistant coatings to marine structures.
  • Oil & gas: Repair and restore corrosion and wear (such as shafts, bearings, piping, and valves).
  • Electronics: Add conductive coatings to electronic components (such as circuit boards and antennas), as well as repair and restore electronic devices.
  • Manufacturing: Create new shapes or features on metal parts (such as textured surfaces or complex geometries), or add wear-resistant coatings to industrial components (such as machine tools and moulds).

 

How do our cold spray systems work?

Cold spray technology

Combatting challenges, engineering new possibilities

Machine icon Grey
There are hundreds of cold spray applications – with many more to be discovered.

Many metals can be used in cold spray. And with TKF, you can even fuse dissimilar metals together to leverage their strengths into one part.

Cost effective icon

TKF costs significantly less than traditional manufacturing methods.

Cold spray doesn’t require heat to melt the materials being sprayed.

Icon_Coating_grey

TKF coatings can achieve a density rate of over 99%.

Free Whitepaper

5 reasons why your production line needs cold spray

With ongoing supply shortages and rising costs, keeping production lines running without interruption is becoming a bigger and more costly challenge for many manufacturing leaders.

Learn how compact cold spray systems make equipment last longer – so you enjoy more uptime, greater revenue potential, and increased safety and sustainability.

See what we can do for you

Book a complimentary consultation to see if our solutions suit your manufacturing challenges.

More than materials

Discover our patented approach and technology to transform your manufacturing.